104 research outputs found

    A Decomposition Approach for a New Test-Scenario in Complex Problem Solving

    Get PDF
    Over the last years, psychological research has increasingly used computer-supported tests, especially in the analysis of complex human decision making and problem solving. The approach is to use computer-based test scenarios and to evaluate the performance of participants and correlate it to certain attributes, such as the participant's capacity to regulate emotions. However, two important questions can only be answered with the help of modern optimization methodology. The first one considers an analysis of the exact situations and decisions that led to a bad or good overall performance of test persons. The second important question concerns performance, as the choices made by humans can only be compared to one another, but not to the optimal solution, as it is unknown in general.\ud \ud Additionally, these test-scenarios have usually been defined on a trial-and-error basis, until certain characteristics became apparent. The more complex models become, the more likely it is that unforeseen and unwanted characteristics emerge in studies. To overcome this important problem, we propose to use mathematical optimization methodology not only as an analysis and training tool, but also in the design stage of the complex problem scenario.\ud \ud We present a novel test scenario, the IWR Tailorshop, with functional relations and model parameters that have been formulated based on optimization results. We also present a tailored decomposition approach to solve the resulting mixed-integer nonlinear programs with nonconvex relaxations and show some promising results of this approach

    AudioPairBank: Towards A Large-Scale Tag-Pair-Based Audio Content Analysis

    Full text link
    Recently, sound recognition has been used to identify sounds, such as car and river. However, sounds have nuances that may be better described by adjective-noun pairs such as slow car, and verb-noun pairs such as flying insects, which are under explored. Therefore, in this work we investigate the relation between audio content and both adjective-noun pairs and verb-noun pairs. Due to the lack of datasets with these kinds of annotations, we collected and processed the AudioPairBank corpus consisting of a combined total of 1,123 pairs and over 33,000 audio files. One contribution is the previously unavailable documentation of the challenges and implications of collecting audio recordings with these type of labels. A second contribution is to show the degree of correlation between the audio content and the labels through sound recognition experiments, which yielded results of 70% accuracy, hence also providing a performance benchmark. The results and study in this paper encourage further exploration of the nuances in audio and are meant to complement similar research performed on images and text in multimedia analysis.Comment: This paper is a revised version of "AudioSentibank: Large-scale Semantic Ontology of Acoustic Concepts for Audio Content Analysis

    Mixed-integer optimal control under minimum dwell time constraints

    Get PDF
    AbstractTailored Mixed-Integer Optimal Control policies for real-world applications usually have to avoid very short successive changes of the active integer control. Minimum dwell time (MDT) constraints express this requirement and can be included into the combinatorial integral approximation decomposition, which solves mixed-integer optimal control problems (MIOCPs) to ϵ\epsilon ϵ -optimality by solving one continuous nonlinear program and one mixed-integer linear program (MILP). Within this work, we analyze the integrality gap of MIOCPs under MDT constraints by providing tight upper bounds on the MILP subproblem. We suggest different rounding schemes for constructing MDT feasible control solutions, e.g., we propose a modification of Sum Up Rounding. A numerical study supplements the theoretical results and compares objective values of integer feasible and relaxed solutions

    Optimization as an analysis tool for human complex decision making

    Get PDF
    We present a problem class of mixed-integer nonlinear programs (MINLPs) with nonconvex continuous relaxations which stem from economic test scenarios that are used in the analysis of human complex problem solving. In a round-based scenario participants hold an executive function. A posteriori a performance indicator is calculated and correlated to personal measures such as intelligence, working memory, or emotion regulation. Altogether, we investigate 2088 optimization problems that differ in size and initial conditions, based on real-world experimental data from 12 rounds of 174 participants. The goals are twofold. First, from the optimal solutions we gain additional insight into a complex system, which facilitates the analysis of a participant’s performance in the test. Second, we propose a methodology to automatize this process by providing a new criterion based on the solution of a series of optimization problems. By providing a mathematical optimization model and this methodology, we disprove the assumption that the “fruit fly of complex problem solving,” the Tailorshop scenario that has been used for dozens of published studies, is not mathematically accessible—although it turns out to be extremely challenging even for advanced state-of-the-art global optimization algorithms and we were not able to solve all instances to global optimality in reasonable time in this study. The publicly available computational tool Tobago [TOBAGO web site https://sourceforge.net/projects/tobago] can be used to automatically generate problem instances of various complexity, contains interfaces to AMPL and GAMS, and is hence ideally suited as a testbed for different kinds of algorithms and solvers. Computational practice is reported with respect to the influence of integer variables, problem dimension, and local versus global optimization with different optimization codes

    State elimination for mixed-integer optimal control of partial differential equations by semigroup theory

    Get PDF
    Mixed-integer optimal control problems governed by partial differential equations (MIPDECOs) are powerful modeling tools but also challenging in terms of theory and computation. We propose a highly efficient state elimination approach for MIPDECOs that are governed by partial differential equations that have the structure of an abstract ordinary differential equation in function space. This allows us to avoid repeated calculations of the states for all time steps, and our approach is applied only once before starting the optimization. The presentation of theoretical results is complemented by numerical experiments

    Solving Mixed--integer Control Problems by Sum Up Rounding With Guaranteed Integer Gap

    Get PDF
    Probleme der Optimalen Steuerung, die zeitabhaengige diskrete Entscheidungen beinhalten, haben in letzter Zeit zunehmend Beachtung gefunden, da sie in praktischen Anwendungen mit hohem Potential fuer Optimierung auftreten. Typische Beispiele sind die Wahl von Gaengen in Transport-Problemen oder Prozesse, in denen Ventile verwendet werden. Wir praesentieren Rundungsstrategien fuer direkte Methoden der optimalen Steuerung, die zu einer Approximation der Zielfunktion und Nebenbedingungen fuehren, deren Guete durch die Feinheit des Kontrolldiskretisierungsgitters abgeschaetzt werden kann. Erstmals wird gezeigt, dass eine endliche Anzahl von Umschaltungen sowohl im linearen wie im nichtlinearen Fall ausreicht, und dies bei Existenz von Pfad- und Kontrollbeschraenkungen. Ein numerisches Beispiel wird angegeben um die Methodik zu illustrieren
    • …
    corecore